\(\int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx\) [207]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 120 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\frac {7 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {7 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}} \]

[Out]

7/4*a^(3/2)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+1/2*a^2*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos
(d*x+c))^(1/2)+7/4*a^2*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2842, 21, 2849, 2853, 222} \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\frac {7 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}+\frac {7 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(7*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) + (7*a^2*Sqrt[Cos[c + d*x]]*Sin[c +
d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2842

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Dist[1/(
d*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d
*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m,
2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2849

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[2*n*((b*c + a*d)
/(b*(2*n + 1))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rubi steps \begin{align*} \text {integral}& = \frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{2} \int \frac {\sqrt {\cos (c+d x)} \left (\frac {7 a^2}{2}+\frac {7}{2} a^2 \cos (c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{4} (7 a) \int \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \, dx \\ & = \frac {7 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{8} (7 a) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {7 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}-\frac {(7 a) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d} \\ & = \frac {7 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {7 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.77 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (7 \sqrt {2} \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sqrt {\cos (c+d x)} \left (6 \sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )}{8 d} \]

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(7*Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*Sqrt[Cos[c + d*
x]]*(6*Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2])))/(8*d)

Maple [A] (verified)

Time = 11.74 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.22

method result size
default \(\frac {\left (2 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+7 \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+7 \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {\cos }\left (d x +c \right )\right ) a}{4 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(146\)

[In]

int(cos(d*x+c)^(1/2)*(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4/d*(2*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+7*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)+7*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)))*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)/(1+cos(d*x
+c))/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.86 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\frac {{\left (2 \, a \cos \left (d x + c\right ) + 7 \, a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/4*((2*a*cos(d*x + c) + 7*a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*(a*cos(d*x + c) + a
)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c) + d)

Sympy [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\int \left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}\, dx \]

[In]

integrate(cos(d*x+c)**(1/2)*(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral((a*(cos(c + d*x) + 1))**(3/2)*sqrt(cos(c + d*x)), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1080 vs. \(2 (100) = 200\).

Time = 0.47 (sec) , antiderivative size = 1080, normalized size of antiderivative = 9.00 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/16*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((a*cos(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) + a*sin(2*d*x + 2*c) - (a*cos(2*d*x + 2*c) - 6*a)*sin(1/2*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + (a*sin(2*d*x
 + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - a*cos(2*d*x + 2*c) + (a*cos(2*d*x + 2*c) - 6*a)
*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 6*a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c
) + 1)))*sqrt(a) + 7*(a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - co
s(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))),
(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c
)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
 + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos
(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2
*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))/d

Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\int \sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

[In]

int(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(3/2), x)